
Computer Networks 51 (2007) 4050–4069

www.elsevier.com/locate/comnet
Interactivity vs. fairness in networked Linux systems

Wenji Wu *, Matt Crawford

Fermilab, MS-368, Batavia, IL 60510, United States

Received 18 September 2006; received in revised form 6 February 2007; accepted 3 April 2007
Available online 3 May 2007

Responsible Editor: I. Nikolaidis
Abstract

In general, the Linux 2.6 scheduler can ensure fairness and provide excellent interactive performance at the same time.
However, our experiments and mathematical analysis have shown that the current Linux interactivity mechanism tends to
incorrectly categorize non-interactive network applications as interactive, which can lead to serious fairness or starvation
issues. In the extreme, a single process can unjustifiably obtain up to 95% of the CPU! The root cause is due to the facts
that: (1) network packets arrive at the receiver independently and discretely, and the ‘‘relatively fast’’ non-interactive net-
work process might frequently sleep to wait for packet arrival. Though each sleep lasts for a very short period of time, the
wait-for-packet sleeps occur so frequently that they lead to interactive status for the process. (2) The current Linux inter-
activity mechanism provides the possibility that a non-interactive network process could receive a high CPU share, and at
the same time be incorrectly categorized as interactive. In this paper, we propose and test a possible solution to address the
interactivity vs. fairness problems. Experiment results have proved the effectiveness of the proposed solution.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Linux; Process scheduling; Interactivity; Fairness; Networking
1. Introduction

Over the last several years, the Linux operating
system has gained wide acceptance and is deployed
in many scientific and commercial environments.
Compared to previous versions, Linux 2.6 has made
significant performance improvements in terms of
interactivity, fairness, and scalability. Linux 2.6 is
now preemptible, and has an O(1) CPU scheduler.
1389-1286/$ - see front matter � 2007 Elsevier B.V. All rights reserved

doi:10.1016/j.comnet.2007.04.012

* Corresponding author. Tel.: +1 630 840 4541; fax: +1 630 840
8208.

E-mail addresses: wenji@fnal.gov (W. Wu), crawdad@fnal.
gov (M. Crawford).
The Linux 2.6 scheduler is prioritized and epoch-
based [1–4]. The whole process scheduling is based
on a data structure called runqueue. A runqueue is
created and maintained for each CPU in the system.
The per-CPU runqueue keeps track of all runnable
tasks assigned to a particular CPU. Each runqueue
consists of an active priority array and an expired
priority array. All runnable processes begin in the
active array, and are scheduled in priority order.
In general, when a process expires it is moved to
the expired array so that all runnable processes get
an opportunity to execute. When the active array
becomes empty, the expired and active arrays are
switched. This unique active–expired array design
.

mailto:wenji@fnal.gov
mailto:crawdad@fnal. gov
mailto:crawdad@fnal. gov


W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4051
is credited with much of the overall system perfor-
mance improvements.

One design goal of Linux 2.6 is to improve inter-
activity [5]. Processes such as text editors and com-
mand shells interact constantly with their users, and
spend a lot of time waiting for keystrokes and
mouse events. When inputs are received the process
must be woken up quickly; otherwise, the user will
find the system to be unresponsive and annoying.
Typically, the delay must not exceed 150 ms [1].
Linux 2.6 provides excellent interactive performance
by employing the following measures [1,2,4]: (1) its
scheduler is a typical decay usage priority scheduler.
Processes are scheduled in priority order, where
effective priority has two components: static priority
and dynamic priority bonus. The static priority
reflects inherent relative importance of processes,
which is expressed by processes’ nice values. The
dynamic priority bonus depends on CPU usage pat-
terns; the scheduler favors interactive processes and
penalizes non-interactive processes by adjusting the
dynamic priority bonus. (2) To reduce scheduling
latency, expired interactive processes are reinserted
back into the active array, instead of the expired
array. In addition, an interactive process’ timeslice
is divided into smaller pieces, preventing interactive
processes from blocking each other. (3) Linux 2.6 is
kernel-preemptible. Whenever a scheduler clock tick
or interrupt occurs, if a higher-priority task has
become runnable, it will preempt the running task
as long as the latter holds no kernel locks. (4) Linux
2.6’s clock granularity has reached 1 ms level.

Fairness is another design goal of Linux 2.6 [5].
Fairness is the ability of all tasks not only to make
forward progress, but to do so relatively evenly. The
opposite of fairness is starvation, which occurs if
some tasks make no forward progress at all [6,7].
Linux 2.6 scheduler’s active–expired array design
is supposed to ensure fairness [1,2]. However, as
described above, an expired interactive process is
reinserted back into the active array instead of the
expired array. This leads to the possibility of starva-
tion for the processes in the expired array if the
active array continues to hold runnable processes.
To circumvent the starvation issue, when the first
expired process is older than some limit, expired
processes are moved to the expired array without
regard to their interactive status. Usually, an inter-
active process does not consume much CPU time
because most of time it sleeps waiting for user
inputs. In general, the Linux 2.6 scheduler can
ensure fairness among processes, and provide excel-
lent interactive performance at the same time. How-
ever, our experiments and analysis have shown that
the current Linux interactivity mechanism tends to
incorrectly categorize non-interactive network
applications as interactive, which can lead to serious
fairness or starvation issues. The interactivity mech-
anism allows the possibility that a non-interactive
network process could consume a large CPU share,
and at the same time be incorrectly categorized as
interactive. Further, incorrectly labeled ‘‘interactive
network applications’’ might block true interac-
tive applications, resulting in degraded interactive
performance.

Linux-based network end systems have been
widely deployed in the High-Energy Physics
(HEP) community at labs like CERN, DESY,
Fermilab, and SLAC, and at many universities. At
Fermilab, thousands of networked systems run
Linux; these include computational farms, trigger
processing farms, hierarchical storage servers, and
desktop workstations. From a network perfor-
mance perspective, Linux represents an opportunity
since it is amenable to optimization and tuning due
to its open source support and projects such as
web100 and net100 that enable examination of
internal states [8,9]. The performance of Linux-
based network end systems is of great interest to
HEP and other scientific and commercial communi-
ties. In this paper, we analyze the interactivity vs.
fairness issues in networked Linux systems. Our
analysis is based on Linux kernel 2.6.14. Also, it is
assumed that the NIC (Network Interface Card)
driver makes use of Linux’s ‘‘New API,’’ or NAPI
[10,11], which reduces the interrupt load on the
CPUs. The contributions of the paper are as fol-
lows: (1) We systematically study and analyze the
Linux 2.6 scheduling and interactivity mechanism;
(2) Our researches have pointed out that the current
Linux interactivity mechanism is not effective in dis-
tinguishing non-interactive network processes from
interactive network processes, and might result in
serious fairness/starvation problems. Mathematical
analysis and experiments results have verified our
conclusions. (3) Further, we propose and test a pos-
sible solution to address the interactivity vs. fairness
problems. Experiment results have proved the effec-
tiveness of our proposed solution.

The remainder of the paper is organized as fol-
lows: In Section 2 the related researches on interac-
tivity and fairness are presented. Section 3 analyzes
Linux scheduling and interactivity mechanisms. In
Section 4, we investigate the interactivity vs. fairness



Fig. 1. Linux process scheduling.

4052 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
problems in networked Linux systems through math-
ematical analysis. In Section 5, we show experiment
results to further study the problems, verifying our
conclusions in Section 4. In Section 6, we propose
and test a possible solution to address the interactiv-
ity vs. fairness problems in network Linux systems.
And finally in Section 7, we conclude the paper.

2. Related work

The schedulers of Unix variants such as BSD4.3,
FreeBSD, Solaris, and SVR4 [12–15] are typical
decay usage priority schedulers: processes are sched-
uled in priority order; higher priority processes are
scheduled to run first. The priorities of I/O bound
(interactive) processes grow with time, so that when
they are awakened, they have higher priority than
CPU-bound (non-interactive) processes, and are
therefore scheduled to run immediately. In general,
those schedulers provide excellent interactive
response on general-purpose time-sharing systems
for traditional interactive applications that have
low CPU consumption. However, those schedulers
are not effective in support of interactive multimedia
applications (e.g., audio player, video player) that
have high CPU usages. To address this problem,
Etsion et al. [16] proposed the human-centered
scheduling of interactive and multimedia applica-
tions on a loaded desktop. In their approach, the
scheduler first estimates the ‘‘volume of user-inter-
action’’ associated with each process by monitoring
relevant I/O device activity, and then the scheduler
uses those estimates to prioritize interactive pro-
cesses, without respect to their CPU usages. How-
ever, this method might not be appropriate for
some network applications.

To ensure fairness, proportional-share schedulers
[17–20] are usually employed to control the relative
rates at which different processes can use the proces-
sor. Over the years, different proportional-share
schedulers have been proposed. In [17], Waldspurger
et al. proposed the lottery scheduling to enable flex-
ible control over the relative rates at which CPU-
bound workloads consume processor time. In [18],
Goyal et al. proposed a hierarchical CPU scheduler
for multimedia operating systems, which provides
protection between various classes of applications.

In [21], Petrou et al. proposed a hybrid lottery
scheduler, which aims to achieve responsiveness
comparable to the FreeBSD scheduler while main-
taining lottery scheduling’s flexible control over rel-
ative execution rates and load insulation. So far, no
research has been found to relate interactivity and
fairness to network applications.

3. Linux scheduling and interactivity

Linux 2.6 is a preemptive multi-processing operat-
ing system. Processes (tasks) are scheduled to run in
a prioritized round robin manner [1–4], to achieve the
objectives of fairness, interactivity and efficiency.
For the sake of scheduling, a Linux process has a
dynamic priority and a static priority. A process’
static priority is equivalent to its nice value, which
is specified by the user and not changed by the ker-
nel. The dynamic priority is used by the scheduler to
rate the process with respect to the other processes
in the system. An eligible process with better (smal-
ler-valued) dynamic priority is scheduled to run
before a process with a worse (higher-valued)
dynamic priority. The dynamic priority varies dur-
ing a process’ life. It depends on the process’ sched-
uling history and its specified static priority, which
we will elaborate in the following sections. There
are 140 possible priority levels for processes (both
dynamic priority and static priority) in Linux. The
top 100 levels are used only for real-time processes,
which we do not address in this paper. The last 40
levels are used for conventional processes.

3.1. Linux scheduler

As shown in Fig. 1, the whole process scheduling
is based on a data structure called runqueue. Essen-



W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4053
tially, a runqueue keeps track of all runnable tasks
assigned to a particular CPU. One runqueue is cre-
ated and maintained for each CPU in a system.
Each runqueue contains two priority arrays: active
priority array and expired priority array. Each prior-
ity array contains a queue of runnable processes per
priority level. Processes with higher dynamic prior-
ity are scheduled to run first. Within a given prior-
ity, processes are scheduled round robin. All tasks
on a CPU begin in the active priority array. Each
process’ timeslice is calculated based on its static pri-

ority; when a process in the active priority array
uses up its timeslice, it is considered expired. An
expired process is moved to the expired priority
array if it is not interactive. An expired interactive
process is reinserted into the active array if possible.
In either case, a new timeslice and priority are calcu-
lated. When there are no more runnable tasks in the
active priority array, it is simply swapped with the
expired priority array. An unexpired process might
be put into a wait queue to sleep, waiting for
expected events such as completion of I/O. When
a sleeping process wakes up, its timeslice and prior-
ity are recalculated and it is moved to the active pri-
ority array. As for preemption, whenever a
scheduler clock tick or interrupt occurs, if a
higher-priority task has become runnable, it will
preempt the running task as long as the latter holds
no kernel locks.

3.2. Interactive scheduling

As we have said above, an interactive process
needs to be responsive. The Linux kernel must pro-
vide the capabilities of interactive scheduling. To
this end, it needs to:

• Perform process classification: differentiate inter-
active processes from non-interactive processes.

• Try to minimize the scheduling latency [7] for
interactive processes.
– Prevent non-interactive processes from block-

ing interactive processes.
– Prevent interactive processes from blocking

other interactive processes.

The interactivity estimator is designed to find
which processes are interactive and which are not.
It is based on the premise that non-interactive pro-
cesses tend to use up all the CPU time offered to
them, whereas interactive processes often sleep [1].
A sleep_avg is stored for each process: a process is
credited for its sleep time and penalized for its run-
time. A process with high sleep_avg is considered
interactive, and low sleep_avg is non-interactive.
The interactive estimator framework embedded into
Linux operates automatically and transparently.

A process’ dynamic priority varies during the
process’ life span. It depends on the process’ interac-
tivity status and its specified static priority. Linux
assigns a dynamic priority to process P at time t

as follows:

dynamic priorityðP ; tÞ ¼ maxf100;minfstatic priorityðPÞ
þ 5� bonusðP ; tÞ; 139gg ð1Þ

bonusðP ; tÞ ¼ P ! sleep avgðtÞ
�MAX BONUS=MAX SLEEP AVG: ð2Þ

The constant MAX_BONUS is 10 and MAX_
SLEEP_AVG is 1000 ms. P! sleep_avg(t) is the
sleep_avg (in ms) for process P at time t, and it
is limited to the range 0 6 P! sleep_avg(t) 6
MAX_SLEEP_AVG. Therefore, bonus(P, t) ranges
from 0 to 10. The quantity 5 � bonus(P, t) is also
called the dynamic priority bonus. The more time a
process spends sleeping, the higher the sleep_avg

is, and the higher the priority boost.
From (1) and (2), it can be seen that Linux credits

interactive processes and penalizes non-interactive
processes by adjusting dynamic priority bonus. In
this way, Linux allows interactive processes to pre-
empt non-interactive processes when they have
same, or nearly the same, static priorities.

When a process runs out its timeslice, the Linux
kernel needs to determine its interactivity status.
An expired interactive process is reinserted back
into the active array, instead of the expired array.
The interactivity threshold condition for process P
is

bonusðP ; tEÞP static priorityðP Þ=4� 23; ð3Þ

where tE is the moment that process P expires. For a
process P with a default nice value of 0, the static
priority is 120 [1,4] and the interactivity threshold
is equivalent to P! sleep_avg(tE) P 700 ms.

If and only if the condition in (3) holds, P is
deemed interactive. Reinserting an interactive pro-
cess into the active array helps to increase respon-
siveness. If it was not done in this way, an
interactive process in the expired array would have
to wait for all the runnable processes in the active
array to finish before regaining the CPU. However,
keeping an expired interactive process in the active



4054 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
array might lead to starvation for the processes in
the expired array as long as the active array contin-
ues to hold runnable processes. To circumvent star-
vation, special interactivity rules have been made:

• Rule 1: If the time since the first process in the
active array expired is greater than or equal
to STARVATION_LIMIT · NRrunning + 1, any
expired processes are moved to the expired array
without regard to their interactive status.
Here, the constant STARVATION_LIMIT is
1000 ms, and NRrunning is the number of pro-
cesses in the runqueue.

• Rule 2: The interactivity is also ignored if a pro-
cess in the expired array has a better static
priority.

Furthermore, an interactive process P’s timeslice
is divided into smaller pieces. Each piece has the size
of TIMESLICE_GRANULARITY(P), which is
actually a macro that yields the product of the num-
ber of CPUs in the system and a constant propor-
tional to bonus(P, t) [1,4]. An interactive process
does not receive any less timeslice, instead a task
of equal priority may preempt the running process
every TIMESLICE_GRANULARITY(P). The
process is then requeued to the end of the list for
its priority level. Processes at the same priority level
run in round-robin fashion, so execution will rotate
more frequently among interactive processes of the
same priority, preventing them from blocking each
other.
3.3. Sleep_avg scoring

The basic idea of sleep_avg is to credit sleep time
and penalize run time. However, the calculation of
sleep_avg is not a simple counter up and down.
The current interactive status of the process is used
to weight both sleep time and run time to introduce
Fig. 2. Updating
some auto-regulation into the calculation [22]. The
updating of sleep_avg occurs at the moments that:
(a) a process wakes up from sleep or blocking state,
or (b) a process yields the CPU.

In the example of Fig. 2, at t0 process P starts to
run for a duration of tr. At t1, P goes to sleep and
yields the CPU to process Q. Then at t2, P wakes
up and preempts Q. In general, the updating of slee-

p_avg follows (4) and (5):

P! sleep avgðt1Þ¼maxf0;P! sleep avgðt0Þ� tr �ag;
ð4Þ

where a is a weighting factor for run time, a = 1/
max {1,bonus(P, t0)}

P ! sleep avgðt2Þ ¼ minfMAX SLEEP AVG; P

! sleep avgðt1Þ þ ts � bg; ð5Þ

where b is a weighting factor for sleep time, b = max
{1,10 � bonus(P, t1)}.

However, when updating sleep_avg for waking
processes, special measures are taken to treat the
following scenarios [1,4]: (a) Processes that sleep a
long time are categorized as idle and will get mini-
mally interactive status to prevent them suddenly
becoming CPU intensive and starving other pro-
cesses. (b) Processes waking from an uninterruptible
sleep are limited in their sleep_avg rise as they are
likely to have been waiting on disk I/O, which is
not a strong indicator of interactivity. (Most local
disk I/O is associated with uninterruptible sleep.)
(c) When an awakened process is put into a
runqueue, there might be scheduling latency, which
could be of a non-negligible duration. In this case,
the time spent on the runqueue might or might
not be credited as sleep time, depending on the state
of the process when it was awakened. The state of
the process is encoded within the process’ activated

field [1]. Let’s assume that process P waits on
runqueue for a period of tw before it is scheduled
of sleep_avg.



Table 1
Credited sleep time vs. wait time on runqueue

P! activated code �1 1 2 0
Credited sleep time 0 0.3*tw tw N/A

W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4055
to run. The credited sleep time is as shown in Table
1. For example, a process might sleep to wait for
data from network. Afterwards, when the process
is woken up, its wait time on the runqueue is fully
credited to the sleep_avg because its P! activated

code is 2.
Since Linux only counts time in integral tick

units, the Linux clock granularity might play a role
when updating the sleep_avg: some sleep/run times
are rounded up to the next whole tick, while others
are rounded down. On average, these two effects
tend to cancel out [23]. Furthermore, in Linux 2.6
the clock granularity is 1 ms level. In general, the
sleep_avg is updated with reasonable accuracy.
4. Interactivity vs. fairness in networked Linux

system

In previous sections we have discussed the Linux
interactive scheduling mechanism: an expired inter-
active process is reinserted back into the active
array, instead of the expired array. Interactive
scheduling makes the Linux systems more respon-
sive and interactive. However, interactive schedul-
ing would bring the possibility of unfairness if the
interactivity classification was inaccurate. For
example, when a non-interactive process is incor-
rectly classified as interactive, reinserting it back
into the active array will gain it extra scheduling
runs, at the expense of other non-interactive pro-
cesses. What’s worse is that when a non-interactive
process incorrectly gains interactive status, its
dynamic priority is correspondingly enhanced,
which might block some true interactive processes.

As remarked above, special measures have been
taken to make interactivity classification accurate.
Those measures are effective in preventing processes
that mainly wait for disk I/O from being categorized
as interactive [22]. However, our experiments and
analysis have shown that the current interactivity
classification mechanism is not effective in classify-
ing network-related processes. It tends to classify
applications like ftp and rcp as interactive when
bandwidth is limited or the sender is slower than
the receiver. Applications like ssh, telnet, and http
clients are generally interactive applications; but
ftp, rcp, scp, and the like are not. If they are misclas-
sified, it will raise scheduling fairness issues. In the
following sections, we use a simplified model to ana-
lyze the fairness vs. interactivity issues.

Assume there is bulk data flowing from a sender
to a receiver (as in ftp, for example). Process P is the
data receiving process in the receiver. The network
is relatively stable, and incoming packets are evenly
spaced with a rate of Ni packets/s (pps). There is no
other traffic directed to the receiver. This assump-
tion holds for traffic patterns like voice over IP
[24] or an ideal TCP self-clocking stream such as
in [25]. In reality, the incoming traffic pattern is
irregular. However, NAPI or ‘‘interrupt coalescing’’
will mask the arrival pattern and to some extent nul-
lify its effect on the receiver. Similar conclusions are
still expected to be valid, and are borne out by
experiments. Also, let the NAPI driver’s hardware
interrupt time be Tintr, which includes NIC interrupt
dispatch and service time; the software interrupt
softnet’s packet service rate be Rsn (pps); and pro-
cess P’s data service rate is SP(pps). When the net-
work bandwidth is limited, or the sender’s
processing power is relatively slower than the recei-
ver’s processing power, we can assume that
Ni� Rsn. Let process P have the default nice value
of 0.
4.1. Single process receiver

Only process P runs on the receiver, no other
processes. At time 0, P is waiting for network data
from the sender (TCP or UDP).

As shown in Fig. 3, packets start to arrive at
receiver at time 0. As an interrupt-driven operating
system, the Linux execution sequence is: hardware
interrupts! software interrupts! processes [1,2].
Packet 1 is first transferred to ring buffer, then the
NIC raises a hardware interrupt to schedule softirq
– softnet. Afterwards, the software interrupt han-
dler (softnet) starts to move packet 1 from ring buf-
fer to the socket’s receive buffer of process P,
waking up process P and putting it on the runqueue.
During this period, new packets might arrive at the
receiver. For example, packet 2 arrives during the
period in Fig. 3. Softnet continues to process the
packets within the ring buffer until it is empty. Let-
ting Tsn be the duration that Softnet spends on the
ring buffer, we see that
1þ bðT intr þ T snÞ � N ic ¼ T sn � Rsn: ð6Þ



Fig. 3. Interactivity vs. fairness in networked Linux.

4056 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
Here, Tsn*Rsn is actually the number of packets
that are handled together

T sn ¼
1þ T intr � Ni

Rsn � N i
� Rsn

� ��
Rsn: ð7Þ

Then softirq yields the CPU. Process P begins to
run, moving data from the socket’s receive buffer
into user space. Since there are Tsn * Rsn packets
in the receiver buffer, process P runs for a duration
of Tr = (Tsn * Rsn)/SP. Here, we are considering a
relatively low incoming packet rate compared to
the receiver’s processing power. Before the next
packet (P3 in Fig. 3) arrives at the receiver, process
P runs out of data, and again goes to sleep, waiting
for more. Either of two conditions could lead to a
relatively low incoming packet rate: the network
bandwidth from sender to receiver is low, or the sen-
der’s hardware is less powerful than the receiver’s. If
the next packet always arrives before process P goes
to sleep, the sender will overrun the receiver. Incom-
ing packets would accumulate in the socket’s receive
buffer. For TCP traffic, the flow control mechanism
would take effect to slow down the sender.

When the next packet arrives at the receiver, the
same scenario as described above occurs. The cycle
repeats until process P stops. At time tE, process P’s
timeslice expires.

When incoming traffic wakes up process P, its
wait time on runqueue is fully credited to the
sleep_avg. For the process being discussed, its
P! activated code is 2. As shown in Fig. 3, process
P runs for Tr and sleeps for Ts in each cycle.

Here

T r ¼
T sn � Rsn

SP

¼
1þT intr�Ni

Rsn�Ni
� Rsn

j k
SP

; ð8Þ

T s ¼
1þT intr�Ni

Rsn�Ni
� Rsn

j k
Ni

�
1þT intr�Ni

Rsn�Ni
� Rsn

j k
SP

: ð9Þ

Following (4) and (5), it is easy to update
P! sleep_avg(t) at time t.

From (8) and (9), it follows that

T r

T s

¼ N i

SP � Ni
: ð10Þ

Correspondingly, process P’s CPU share is

T r

T r þ T s

¼ Ni

SP

: ð11Þ

Given the receiver and process P, SP is fixed.
Therefore, it can be derived from (3), (4), (5), and
(10) that process P’s interactivity status would be
strongly dependent on the packet arrival rate Ni,
instead of interactive activities.

As illustrated in Fig. 3, we will count cycles of
run and sleep beginning when the process wakes
up. Cycle 1 starts at t0 and ends at t1. Since an inter-
val Tr of running is not more than 100 ms and



W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4057
decreases sleep_avg by aTr, with a 6 1, sleep_avg

may fall to the next 100 ms bracket during the run-
ning portion of a cycle, but no further. This may
increase b by 1, but no more. Referring to (4) and
(5), we collect the possible changes of sleep_avg in
one cycle, Dsleep_avg, in Table 2.

From Table 2, we can surmise the following
theorem.

Theorem 1. Process P is the data receiving process in

the receiver. The network is relatively stable, and

incoming packets are evenly spaced with a rate of Ni

(pps). And Process P’s data service rate is SP (pps). If

Ni/SP < 0.9, P will be categorized as interactive if it

runs long enough.

Proof. If Ni/SP < 0.9, from (10) it can be derived
that Tr/Ts < 9. From Table 2, it is seen that when
Tr/Ts < 9, Dsleep_avg > 0 for any cycle. To catego-
rize a process as interactive, it suffices to meet the
condition in (3). Let us assume process P’s initial
sleep_avg is sleep_avg(0)when it is initially forked,
and its nice value is 0.

• If sleep_avg(0) P 700 ms. Since Dsleep_avg > 0
for any cycle, process P will always be catego-
rized as interactive.

• If sleep_avg(0) < 700 ms. Since Dsleep avg P
4T s � T r=6 > 5

2
T s for any cycle, process P

needs to run for some finite number of cycles
n to achieve

Pn
k¼1Dsleep avgðkÞ > 700ms�

sleep avgð0Þ.

Therefore, process P will meet the condition in (3)
to be categorized if it is running long enough. h

Theorem 1 shows that process P’s interactivity
status is strongly dependent on the packet arrival
rate Ni, instead of its interactive activities. Clearly,
Table 2
Changes of sleep_avg in each cycle

P! sleep_avg(t0) a

0 6 P! sleep_avg(t0) < 100 1
100 6 P! sleep_avg(t0) < 200 1
200 6 P! sleep_avg(t0) < 300 1/2
300 6 P! sleep_avg(t0) < 400 1/3
400 6 P! sleep_avg(t0) < 500 1/4
500 6 P! sleep_avg(t0) < 600 1/5
600 6 P! sleep_avg(t0) < 700 1/6
700 6 P! sleep_avg(t0) < 800 1/7
800 6 P! sleep_avg(t0) < 900 1/8
900 6 P! sleep_avg(t0) < 1000 1/9
P! sleep_avg(t0) = 1000 1/10
we can make the conclusions: network packets
arrive at the receiver independently and discretely
and the ‘‘relatively fast’’ non-interactive network
process might frequently sleep to wait for packet
arrival. Though each sleep lasts a very short period
of time, the wait-for-packet sleeps occur so fre-
quently that they lead to interactive status for the
process.

The current Linux interactivity mechanism carries
the chance that a non-interactive network process
could consume a high CPU share, and at the same
time be incorrectly categorized as interactive. For
example, assuming 700 ms 6 P! sleep_avg(t0) <
800 ms, process P has gained interactive status.
Based on Table 2, the change of sleep_avg in each
cycle is 4Ts � Tr/7 (or 3Ts � Tr/7). To keep the inter-
active status, it needs to meet the condition of 4Ts �
Tr/7 P 0 (or 3Ts � Tr/7 P 0), Which is Tr/Ts 6 28
(or Tr/Ts 6 21). This condition can be easily met in
normal network conditions. However, although pro-
cess P keeps its interactive status, process P might
still be using a high CPU percentage. When process P

just meets the condition of Tr/Ts 6 28 (or Tr/Ts 6 21)
to keep the interactive status, its CPU can reach as
high as 96.55%. Table 3 shows process P’s maximal
CPU share at different scenarios while keeping its
sleep_avg in the indicated range.
4.2. Receiver plus other CPU load

In this case, process P runs on the receiver with
M other non-interactive processes. All the processes
have the same default nice value of 0.

Theorem 2. Process P runs on the receiver with M

non-interactive processes. All the processes have the

default nice value of 0. Assume that the network is

relatively stable, and P has already gained interactive
b Dsleep_avg

10 10Ts � Tr

10 or 9 10Ts � Tr or 9Ts � Tr

9 or 8 9Ts � Tr/2 or 8Ts � Tr/2
8 or 7 8Ts � Tr/3 or 7Ts � Tr/3
7 or 6 7Ts � Tr/4 or 6Ts � Tr/4
6 or 5 6Ts � Tr/5 or 5Ts � Tr/5
5 or 4 5Ts � Tr/6 or 4Ts � Tr/6
4 or 3 4Ts � Tr/7 or 3Ts � Tr/7
3 or 2 3Ts � Tr/8 or 2Ts � Tr/8
2 or 1 2Ts � Tr/9 or Ts � Tr/9
1 Ts � Tr/10



Table 3
Process P’s CPU share

P! sleep_avg(t0) Tr/Ts CPU share (%)

700 6 P! sleep_avg(t0) < 800 21 or 28 95.45 or 96.55
800 6 P! sleep_avg(t0) < 900 16 or 24 94.12 or 96
900 6 P! sleep_avg(t0) < 1000 9 or 18 90 or 94.74
P! sleep_avg(t0) = 1000 10 90.91

1 Iperf is multi-threaded; here we mean the iperf data trans-
mission/reception thread.

4058 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
status. For process P, if Ni/SP < 0.9, no matter how

many non-interactive processes run on the system,
process P will have a CPU share of Ni/SP, rather than

1/(M + 1). The M non-interactive processes’ total

CPU share is: (SP � Ni)/SP, rather than M/(M + 1).

Proof. All processes begin in the active array, and
are scheduled as described in Section 3. Since all
processes have the same nice value, hence the
same static priority, the second special interactiv-
ity rule to circumvent starvation for the processes
in the expired array is not applicable here. Before
process P is moved to the expired array, it will
maintain its interactive status and have higher
dynamic priority than the M non-interactive pro-
cesses. This is due to the facts: (1) process P

has already gained interactive status; (2) if it has
Ni/SP < 0.9, it has Dsleep_avg > 0 for any cycle,
as proven in Theorem 1. Therefore, process P will
not lose its interactive status. When process P

expires, it will be reinserted in the active array,
until the condition in the first special interactivity
rule is satisfied.

Also, considering that Linux is preemptive:
whenever a scheduler clock tick or interrupt occurs,
if a higher-priority task has become runnable, it will
preempt the running task as long as the latter holds
no kernel locks. Therefore, no matter how many
non-interactive processes run on the system, before
process P is moved to the expired array, process P’s
scheduling pattern is the same as that of the
scenario discussed in Section 4.1, where only process
P runs on the receiver. Correspondingly, process P’s
CPU share won’t change: it is Ni/SP. The M non-
interactive processes’ total CPU share is: (SP � Ni)/
SP. The M non-interactive processes can only run
while process P sleeps.

According to the first special interactivity rule, ‘‘if
the time since the first process in the active array
expires is greater than or equal to STARVA-

TION_LIMIT · NRrunning + 1, any expired pro-
cesses are moved to the expired array without
regard to their interactive status’’. In all, there are
M + 1 processes in the runqueue, which implies
NRrunning = M + 1. Also, STARVATION_LIMIT =
1000 ms. Let us denote the timeslice of a process with
nice value g as timeslice(g); timeslice(0) = 100 ms.

If it is the case that Ni/SP < 0.9, then (SP � Ni)/SP >
0.1 and it follows that STARVATION_LIMIT ·
(M + 1) · (SP � Ni)/SP > M · timeslice(0) + 1. This
implies that all the M non-interactive processes will
expire and be moved to the expired array before the
first special interactivity rule comes into effect. Since
non-interactive processes are running only when
process P is sleeping, at the moment when the last
non-interactive process expires and is moved to the
expired array, there is no runnable process in the
active array. Then the active array is switched
with the expired array, and a new cycle starts.
Therefore, process P’s scheduling pattern is the
same as that of the scenario discussed in Section 4.1.
Correspondingly, process P’s CPU share won’t
change; it is Ni/SP, instead of 1/(M + 1). The M
non-interactive processes can only run when pro-
cess P is sleeping. The M non-interactive pro-
cesses’ total CPU share is (SP � Ni)/SP, instead of
M/(M + 1). h

From Theorem 2, it can be seen that networked
Linux systems can have serious fairness problems.
For example, if M is 10 and Ni/SP = 0.85, then, pro-
cess P’s CPU share would be as high as 85% while
the total CPU shares of the 10 non-interactive pro-
cess is only 15%. This establishes our conclusion
that the Linux interactivity mechanism carries the
chance that a non-interactive network process could
consume a high CPU share, and at the same time be
incorrectly categorized as interactive.
5. Experiments and analysis

To verify our claims in Section 4, we run data
transmission experiments upon Fermilab’s sub-net-
works, and the wide area networks between Brook-
haven National Laboratory (BNL) and Fermilab
(FNAL). In the experiments, we run iperf [26] to
send data in one direction between two computer
systems. iperf 1 on the receiver is the data receiving
process P. The sub-networks used at Fermilab are
as shown in Fig. 4a. The sender and receiver are
attached to two Cisco 6509 switches connected to



Fig. 4a. Fermilab sub-networks.

Fig. 4b. Wide area networks between BNL and FNAL.

W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4059
each other by an uncongested 10-gigabit/second
link. During the experiments, the background traffic
in the network is low, and there is no packet loss or
reordering in the network. For the network, the
Round Trip Time (RTT) statistics are: min/avg/

max/dev = 0.134/0.146/0.221/0.25 ms. In the exper-
iments on local subnets, we use two different send-
ers, one more powerful than the other. For
simplicity, in the following sections, they are termed
‘‘Fast Sender’’ and ‘‘Slow Sender’’ respectively. The
sender and receiver’s characteristics are shown in
Table 4. Here, the Fast Sender and Slow Sender

are relative to each other. At their full transmission
capacities, both senders can saturate the Gigabit
Ethernets.

The wide area networks between BNL and
FNAL are as shown in Fig. 4b. During the experi-
ments, data are transmitted from BNL to FNAL.
There might be packet loss, or packet reordering
in the wide area networks. The senders and recei-
ver’s characteristics are shown in Table 5. The recei-
ver is the same system as the one used on local
subnets. For the network, the RTT statistics are:
min/avg/max/dev = 23.563/23.633/23.773/0.172 ms.

In order to study the detailed interactive schedul-
ing process, we have added instrumentation within
Linux kernel. Specifically, (1) we keep track of the
sleep_avg for each process at the moments its time-
slice runs out; (2) we monitor the number of times
that a process is reinserted into the active array
due to its interactive status. For simplicity, it is
termed ‘‘reinsertion count;’’ (3) we collect each pro-
cess’ stime and utime2 when it is terminated. Also to
2 stime, utime: the time process spent in the kernel space and
user space respectively.
study the effects of interactive scheduling on system
performance, we create a non-interactive scheduling
Linux, in which expired processes are inserted into
the expired array, without regard to their interactiv-
ity status. In the following sections, we term ‘‘WI’’
for interactive scheduling, and ‘‘NI’’ for non-inter-
activity scheduling.

To create non-interactive processes in the receiver,
we run a purely CPU intensive application that exe-
cutes a number of arithmetic operations in a loop.
Non-interactive processes run as background loads.
If there are m such processes in the receiver, it is
termed as ‘‘BLm’’. In all the experiments, the sender
transmits one TCP stream to the receiver for 100 sec-
onds. In the receiver, iperf is run as ‘‘iperf –s –w

20M’’. All the processes are running with a nice value
of 0. Further, since the transmission lasts 100 sec-
onds, in the receiver we calculate iperf’s CPU share
as: (stime + utime)/100 s. Consistent results were
obtained across repeated runs. In the following sec-
tions, we present our experiment results.

5.1. Experiments over local subnets

Tables 6 and 7 show the iperf experiment results
in the receiver for both slow sender and fast sender.
In the experiments, the background loads are var-
ied. For each group of data in the tables, we run
the same experiments five times, and choose the
group of data with highest throughput. The corre-
sponding experiment results for iperf in the receiver
are recorded. Those data include throughput, iperf’s
CPU share, and reinsertion count. Also, in the
experiments, we compare interactive to non-interac-
tive scheduling. Iperf itself is not an interactive
application. However, the experiment results in
Tables 6 and 7 show that iperf’s interactive status
is strongly dependent on the network conditions:
iperf is more readily categorized as interactive with
a slow sender than a fast sender. This verifies our
claims in Section 4: when network packets arrive
at the receiver independently and discretely, the
‘‘relatively fast’’ non-interactive network process
might frequently sleep to wait for packet arrival.
Though each sleep lasts a very short period of time,
the wait-for-packet sleeps occur so frequently that
they lead to interactive status for the process.

For better comparison and presentation, we
show the reinsertion count of different experiment
scenarios in Fig. 5. In the case of the slow sender,
the reinsertion count is around 800 at different back-
ground loads; as for the fast sender, the highest



Table 5
Sender and receiver features for experiments upon wide area
networks

BNL sender FNAL receiver

CPU One Intel Pentium IV
CPU (3.2 GHz)

One Intel Pentium III
CPU (1 GHz)

System memory 1 G 512 MB
NIC Intel PRO/1000,

32 bit-PCI bus slot
at 33 MHz, 1 Gbps,
twisted pair

3COM, 3C996B-T,
32 bit-PCI bus slot
at 33 MHz, 1 Gbps,
twisted pair

Table 6
Iperf experiment results in the receiver (slow sender)

Load Scheduler Throughput
(Mbps)

CPU share
(%)

Reinsertion
count

BL0 WI 436 78.489 780
NI 473 87.569 0

BL1 WI 443 81.573 815
NI 285 49.923 0

BL2 WI 438 80.613 801
NI 185 33.022 0

BL4 WI 430 79.217 785
NI 113 20.025 0

BL8 WI 440 81.093 811
NI 64.7 11.117 0

Table 4
Senders and receiver features for experiments upon fermilab’s sub-networks

Fast sender Slow sender Receiver

CPU Two Intel Xeon CPUs
(3.0 GHz)

One Intel Pentium IV CPU
(2.8 GHz)

One Intel Pentium III CPU
(1 GHz)

System memory 3829 MB 512 MB 512 MB
NIC Syskonnect, 32 bit-PCI bus slot at

33 MHz, 1 Gbps, twisted pair
Intel PRO/1000, 32 bit-PCI bus slot at
33 MHz 1 Gbps, twisted pair

3COM, 3C996B-T, 32 bit-PCI bus
slot at 33 MHz, 1 Gbps, twisted pair

Table 7
Iperf experiment results in the receiver (fast sender)

Load Scheduler Throughput
(Mbps)

CPU share
(%)

Reinsertion
count

BL0 WI 464 99.228 7
NI 478 99.975 0

BL1 WI 241 49.995 7
NI 241 50.197 0

BL2 WI 159 34.246 8
NI 160 32.826 0

BL4 WI 97.0 20.859 8
NI 105 20.175 0

BL8 WI 74.2 15.375 47
NI 58.3 11.143 0

4060 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
reinsertion count is only 47. As the experiment runs
for 100 seconds, and the timeslice for a process with
default nice value of 0 is 100 ms, there cannot be
more than 1000 expirations of iperf’s timeslice.
When eliminating factors of process sleep time and
system interrupt time by noting iperf’s CPU share,
reinsertion count of 800 implies that iperf is catego-
rized as interactive almost all the time.

Experiment results in Tables 6 and 7 also verify
the correctness of Theorem 2: interactive scheduling
can lead to the fairness issue. As for non-interactive
scheduling, when the number of background pro-
cesses increases, iperf’s CPU share is correspond-
ingly reduced. Basically, if the M + 1 processes
run in the system, each process has its share of
1/(M+1). However, under interactive scheduling,
iperf’s CPU shares are dependent on the network
conditions. With a slow sender, iperf’s CPU shares
stays near 80%, no matter how many background
processes there are. This is in accord with Theorem
2. With a fast sender, iperf’s CPU share is similar to
what it receives under non-interactive scheduling.
For better presentation, we show the results of
CPU shares in Fig. 6. In the Figure, ‘‘FWI’’ repre-
sents fast sender and interactive scheduling in the
receiver; ‘‘SWI’’ represents slow sender and interac-
tive scheduling in the receiver; ‘‘FNI’’ represents fast
sender and non-interactive scheduling in the recei-
ver; ‘‘SNI’’ represents slow sender and non-interac-
tive scheduling in the receiver.

To further probe the interactivity vs. fairness
issues, we randomly choose two groups of experi-
ment results. The experiments are run with back-
ground load of BL8, one with fast sender, and the
other with slow sender. The experiment results are
given in Figs. 7–10.

Figs. 7 and 8 give iperf’s sleep_avg in the receiver
for slow and fast sender respectively. For the slow
sender (Fig. 7), it can be seen that iperf’s sleep_avg

is always greater than 700 ms. It means that iperf
is categorized as interactive all the time. However,
for the fast sender (Fig. 8), iperf is categorized as
non-interactive most of the time. This is the reason
that with a fast sender, iperf’s CPU share is similar
to what it is under non-interactive scheduling. These



Fig. 5. Comparison of reinsertion count.

Fig. 6. Comparisons of CPU shares.

Fig. 7. Iperf’s sleep_avg in the receiver (slow Sender).

W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4061
experiment results agree with our analysis in previ-
ous sections. It further demonstrates that the cur-
rent interactivity classification mechanism is not
effective in classifying network-related processes,



Fig. 8. Iperf’s sleep_avg in the receiver (fast Sender).

Fig. 9. Histogram of time intervals between consecutive timeslice expiration instants for iperf in the receiver (slow sender).

4062 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
which are strongly dependent on the network
conditions.

Figs. 9 and 10 give the histograms of time inter-
vals between consecutive timeslice expiration
instants for iperf in the receiver. These results verify
the correctness of Theorem 2 from another perspec-
tive. Fig. 7 shows that with the slow sender iperf is
always categorized as interactive. Therefore, each
time iperf’s timeslice expires, it is reinserted into
the active array, instead of the expired array. Also,
due to its interactive status, iperf gains a priority
bonus, resulting in higher dynamic priority than
other non-interactive processes. Those non-interac-
tive processes only run during the periods that iperf
sleeps. Considering that facts that (1) with a nice
value of 0, the timeslice is 100 ms; (2) iperf might
sleep to wait for data, most of the time intervals
between consecutive timeslice expiration instants



Fig. 10. Histogram of time intervals between consecutive timeslice expiration instants for iperf in the receiver (fast sender).

W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4063
in Fig. 9 are between 100 ms and 200 ms. However,
Fig. 10, the fast sender case, shows another story.
This is due to the fact that iperf is non-interactive
Table 8
Iperf experiment results in the receiver

Load Scheduler Throughput
(Mbps)

CPU share
(%)

Reinsertion
count

BL0 WI 325 75.877 713
NI 304 65.68 0

BL1 WI 277 59.472 593
NI 248 47.063 0

BL2 WI 274 58.996 588
NI 195 31.922 0

BL4 WI 278 64.144 620
NI 116 19.645 0

BL8 WI 273 58.788 586
NI 79.8 9.717 0

Fig. 11. Comparisons
most of time with a fast sender (Fig. 8). Once iperf’s
timeslice expires, it will be moved to the expired
array and can only regain the CPU after all eight
non-interactive processes finish their timeslices.
That is why the majority of the time intervals
between consecutive timeslice expirations for iperf
are greater than 900 ms.
5.2. Experiments over wide area networks from BNL
to FNAL

We repeat our experiments over the wide area
networks from BNL to FNAL. Experiment results
also verify the claims of previous sections. Table 8
shows the iperf experiment results in the receiver.
Fig. 11 gives the comparison of CPU shares. It
of CPU shares.



4064 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
shows that the fairness issue also arises in wide area
networking.

Figs. 12 and 13 give the results of one random
wide area network experiment from BNL to FNAL.
The background load of the experiment is BL8.
Fig. 12 gives iperf’s sleep_avg in the receiver. It
can be seen that iperf is also categorized as interac-
tive all the time due to network conditions. Fig. 13
shows the histogram of time intervals between con-
secutive timeslice expiration instants for iperf in the
receiver. It gives similar results as Fig. 9.
Fig. 12. Iperf’s sleep_a

Fig. 13. histogram of time intervals between consecutive time
6. A possible solution

Our experiments and analysis described above
have shown that the current interactivity classifica-
tion mechanism is not effective in distinguishing
non-interactive network processes from interactive
processes, resulting in serious fairness/starvation
problems. To summarize, the causes of this are:
(1) network packets arrive at the receiver indepen-
dently and discretely; the ‘‘relatively fast’’ non-inter-
active network process might frequently sleep to
vg in the receiver.

slice expiration instants for iperf in the receiver (WAN).



Table 9
Wait-for-packet sleep statistics for iperf data transmission experiment

Experiment <2 ms (%) <5 ms (%) <10 ms (%) <15 ms (%) <20 ms (%) Mean (ms) Throughput (Mbps)

BNL -> FNAL (1) 68.32 83.82 97.79 99.84 99.88 2.2214 263
BNL -> FNAL (2) 68.72 85.08 98.85 99.92 99.95 2.0071 221
FNAL -> FNAL (1) 99.78 99.85 99.93 99.93 99.93 0.2285 383
FNAL -> FNAL (2) 99.70 99.79 99.88 99.88 99.89 0.2259 438

W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4065
wait for network packets. Though each sleep lasts
for a short period of time, they occur more than fre-
quently enough to lead to interactivity status. (2)
The current Linux interactivity mechanism provides
the possibilities that a non-interactive network pro-
cess could consume a high CPU share, and at the
same time be incorrectly categorized as interactive.
To resolve the interactivity vs. fairness issues there
might be two basic approaches. One approach is
to completely overhaul the interactivity mechanism.
However, the current mechanism has been proven
effective for traditional non-networked applications.
Major modifications would be likely to affect those
applications. Clearly, this approach might be com-
plex and time-consuming. The second approach is
to reduce or eliminate those sleep_avg updates trig-
gered by short inter-packet sleeps under non-inter-
active conditions. We pursue the latter course.

Usually, network applications can be classified
into the following categories:

(a) Interactive network applications like ssh, tel-
net, and web browsing. Since those applica-
tions involve human interactions, the wait-
for-packet sleeps in the receiver usually last
for hundreds of milliseconds or even seconds
to wait for user inputs. For example, in [16],
Etsion et al. have reported that standard typ-
ing at a rate of about 8 characters per second.
In the extreme case, if a packet was sent out
for each character typed, the inter-packet
space would be average around 125 ms.

(b) Non-interactive network applications. Some
non-interactive network applications, like
ftp,3 gridftp, and scp, involve bulk data trans-
mission. As explained above, due to packet-
switched network’s packet delivery nature:
network packets arrive in the receiver indepen-
3 FTP implementations usually are multi-processed or multi-
threaded: one process/thread is in charge of FTP control channel,
which may be interactive; other processes/threads are in charge of
data transmissions. Here, we mean FT P’s data transmission
processes/threads, and similarly for gridftp.
dently and discretely. The ‘‘relatively fast’’
network process in the receiver might fre-
quently sleep to wait for network packets.
Though each wait-for-packet sleep is short,
they are very frequent. Iperf also belongs to
this category. Table 9 gives the wait-for-
packet sleep statistics for a group of data
transmission experiments in Section 5. It
shows that most wait-for-packet sleeps last
for a few milliseconds or less.

(c) Multimedia network applications. For these
applications, network packets are transmitted
and received periodically. For example, VOIP
packets are transmitted and received every
20 ms. These applications are categorized as
‘‘soft real-time’’ so other measures should be
taken, regardless of the issues investigated
here, to guarantee their CPU shares and
responsiveness. Possibilities include (1) In
Linux 2.6, making use of chrt [27] to classify
these applications as real-time. Linux 2.6 pro-
vides two real-time scheduling policies,
SCHED_FIFO and SCHED_RR, which sup-
port soft real-time behaviors [1,2]. (2) When
developing these applications, specifically
requesting real-time support. Linux 2.6 pro-
vides a family of system calls to support such
capabilities [2]. However such an approach
might reduce application portability [28]. (3)
Making use of a proportional-share scheduler
[18,20] to provide protection between various
classes of applications. This paper mainly
address the interactivity vs. fairness issues for
network applications of categories (a) and (b).

Table 9 gives us insight on how to distinguish
interactive network applications from non-interac-
tive ones: for a truly interactive application, the
wait-for-packet sleeps usually last for tens or
hundreds of milliseconds or more; however, the
inter-packet sleeps for bulk data transmission appli-
cations usually last for a few milliseconds or less.
Accordingly, to resolve the interactivity vs. fairness
issues in networked Linux systems, our strategy is as



Table 10
Iperf experiment results in the receiver (slow sender)

Load Scheduler Throughput
(Mbps)

CPU share
(%)

Reinsertion
count

BL0 O-WI 436 78.489 780
N-WI 455 87.467 8

BL1 O-WI 443 81.573 815
N-WI 304 56.38 221

BL2 O-WI 438 80.613 801
N-WI 260 47.493 254

BL4 O-WI 430 79.217 785
N-WI 181 32.682 177

BL8 O-WI 440 81.093 811
N-WI 109 19.748 104

Fig. 14. Comparisons

Fig. 15. Iperf’s sleep_avg in th

4066 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
follows: when the sleep duration does not exceed
some minimal value, sleep_avg for the network pro-
cess will not be updated; sleep_avg is only updated
when the sleep exceeds the threshold. We have mod-
ified the Linux kernel, and call this floor value the
‘‘Interactive Network Threshold’’. The value is con-
figurable through a new item in the /proc filesystem,
/proc/sys/kernel/interactive_network_
threshold, and its unit is milliseconds. It can
be set according to the network conditions and the
system’s purpose. If the system is mainly used for
local area networks, a relatively small value such
as 5 ms is quite enough. If the system is used for
of CPU shares.

e receiver (slow sender).



W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4067
wide area networks, and the packet jitter is high,
interactive_network_threshold could be
configured even higher. Usually high packet jitter
implies low throughput; it would not cause serious
fairness issues in the receiver. Therefore, interac-
tive_network_threshold need not be too
high. In our implementation, the default interac-
tive_network_threshold is set at 30 ms. If
system owner does not care about the interactivity
Fig. 16. Iperf’s sleep_avg in the receiver for experiments from BNL
(b) interactive_nework_threshold = 30 ms.
vs. fairness issues at all, it can be set as 0. If process-
ing of streaming media such as VOIP is competing
with other system loads and has not been protected
as suggested above, an interactive_net-
work_threshold of 15 ms may be better.

We repeat the data transmission experiments as
described in Section 5 on the Linux updated with
the new interactivity parameter described as above.
We compare the new experiment data with those
to FNAL (a) interactive_network_threshold = 10 ms



4068 W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069
obtained in Section 5. The old experiment will be
prefixed with ‘‘O-’’, the new data with ‘‘N-’’.

Table 10 shows the iperf experiment results in the
receiver for experiments over Fermilab’s sub-net-
works. Since the fairness issue is not serious with the
fast sender, the experiments are run only with the slow
sender. Theinteractive_network_threshold
is set as 5 ms. For better comparison and presenta-
tion, we show the comparisons of CPU shares in
Fig. 14. It can be seen that: with the updated interac-
tivity algorithm, iperf’s CPU share decreases as the
background load increases; the reinsertion count of
N-WI is much reduced compared to O-WI. Since
interactive_network_threshold is set so
low, it won’t affect the scheduling of true interac-
tive network applications. The experiment results
imply that our proposed solution is effective in resolv-
ing the fairness issues while maintaining the interac-
tivity performance for true interactive network
applications.

Fig. 15 shows iperf’s sleep_avg in the receiver
with the updated interactivity algorithm for a ran-
domly chosen experiment (interactive_net-
work_threshold=5 ms, BL8). Compared with
Fig. 7, it can be seen that most of the time iperf is
not categorized as interactive. When it is not, it
doesn’t gain extra runs at the expense of other
non-interactive processes. This explains why iperf’s
CPU share is effectively decreased when the back-
ground load is increased. It further verifies the effec-
tiveness of our proposed solution. However, it still
can be seen from Fig. 15 that iperf’s sleep_avg might
jump from a low value to a much higher value, lead-
ing to the interactive status (also in Fig. 8). This is
caused by the scheduling delay: when a low-
dynamic-priority iperf wakes up upon packet arri-
val, it might wait on the runqueue for a relatively
long time before it is scheduled to run, which is fully
credited to the sleep_avg. Since the scheduling
delays of interactive network processes cannot be
differentiated from those of non-interactive pro-
cesses, the influence of this type of scheduling delays
is hard to eliminate. This is also the reason that the
CPU shares in the N-WI runs are higher than in NI.

Similar results are obtained in experiments over
the wide area networks from BNL to FNAL.
Fig. 16 shows iperf’s sleep_avg in the receiver for
two random experiments from BNL to FNAL with
the new interactivity algorithm. In Fig. 16(a),
interactive_network_threshold is set as
10 ms, while it is set as 30 ms in Fig. 16(b). It can
be seen that for wide area networks, since the
packet jitter is higher, the interactive_net-
work_threshold needs to be correspondingly
configured higher. Setting interactive_net-
work_threshold to 30 ms effectively improves
the system’s fairness, while not affecting true
interactive network applications’ performance. In
Fig. 16, we also see scheduling delays causing jumps
in sleep_avg.
7. Conclusions

Our researches have pointed out that the current
Linux interactivity mechanism is not effective in dis-
tinguishing non-interactive network processes from
interactive network processes, and results in serious
fairness/starvation problems. Mathematical analy-
sis and experiments results have verified our conclu-
sions. Further, we propose and test a simple
scheduler modification to address the interactivity
vs. fairness problems in networked Linux systems.
Experiment results have proved the effectiveness of
our proposed solution. The improvements in fair-
ness come at a cost: the network throughput for a
given process may be reduced, while the CPU share,
response time, or network throughputs of other pro-
cesses are improved. This will be a desirable trade-
off in some environments, but perhaps not in all.
Acknowledgements

We thank the editor and reviewers for their com-
ments, which helped improve the paper. Also, we
would like to thank Dr. Dantong Yu and Dr. Dim-
itrios Katramatos of Brookhaven National Labora-
tory. Without their sincere help, the wide area
network experiments between BNL and FNAL
were impossible.
References

[1] D.P. Bovet et al., Understanding the Linux Kernel, third
ed., O’Reilly Press, 2005, ISBN 0-596-00565-2.

[2] R. Love, Linux Kernel Development, second ed., Noval
Press, 2005, ISBN 0672327201.

[3] C.S. Rodriguez et al., The Linux(R) Kernel Primer: A Top-
Down Approach for ·86 and PowerPC Architectures,
Prentice Hall PTR, 2005, ISBN 0131181637.

[4] www.kernel.org.
[5] ‘‘Goals, Design and Implementation of the new ultra-

scalable O(1) scheduler’’, Linux Documentation, sched-
design.txt.

[6] A. Silberschatz et al., Operating System Concepts, seventh
ed., John Wiley & Sons, 2004, ISBN 0471694665.

http://www.kernel.org


W. Wu, M. Crawford / Computer Networks 51 (2007) 4050–4069 4069
[7] R. Love, Interactive kernel performance: kernel performance
in desktop and real-time applications, in: Proceedings of the
Linux Symposium, July 23–26, 2003, Ottawa, Canada.

[8] M. Mathis et al., Web100: Extended TCP instrumentation
for research, education and diagnosis, ACM Computer
Communications Review 33 (3) (2003).

[9] T. Dunigan et al., A TCP Tuning Daemon, SuperComput-
ing (2002).

[10] M. Rio et al., A Map of the Networking Code in Linux
Kernel 2.4.20, March 2004.

[11] J.C. Mogul et al., Eliminating receive livelock in an inter-
rupt-driven kernel, ACM Transactions on Computer Sys-
tems 15 (3) (1997) 217–252.

[12] M.J. Bach, The Design of the UNIX Operating System,
Prentice-Hall, 1986, ISBN 0132017997.

[13] U. Vahalia, UNIX Internals: The New Frontiers, Prentice
Hall, 1995, ISBN 0131019082.

[14] J. Mauro et al., Solaris Internals Core Kernel Architecture,
first ed., Prentice Hall PTR, 2000, ISBN 0130224960.

[15] M.K. McKusick et al., The Design and Implementation of
the FreeBSD Operating System, Addison-Wesley Profes-
sional, 2004, ISBN 0201702452.

[16] Y. Etsion et al., Process prioritization using output produc-
tion: scheduling for multimedia, ACM Transactions on
Multimedia Computing, Communications, and Applications
2 (4) (2006) 318–342.

[17] C.A. Waldspurger et al., Lottery scheduling: flexible pro-
portional-share resource management, in: Proceedings of the
1st USENIX Symposium on Operating Systems Design and
Implementation, Monterey, CA, November 1994.

[18] P. Goyal et al., A hierarchical cpu scheduler for multimedia
operating systems, in: Proceedings of the 2nd OSDI Sym-
posium, October 1996.

[19] J. Nieh et al., Virtual-time Round-robin: An O(1) Propor-
tional Share Scheduler, in: Proceedings of the 2001 USENIX
Annual echnical Conference, USENIX, Berkeley, CA, 2001,
pp. 245–259.

[20] K. Jeffay et al., Proportional share scheduling of operating
system services for real-time applications, in: IEEE Real
Time System Symposium, Madrid, Spain, December 1998.

[21] D. Petrou et al., Implementing lottery scheduling: matching
the specialisations in traditional schedulers, in: Proceedings
of the 1999 USENIX Technical Conference, pages 1–14,
Monterey, CA, USA, June 1999.

[22] http://kerneltrap.org/node/780.
[23] Y. Etsion et al., Effects of clock resolution on the scheduling
of interactive and soft real-time processes, in: Proceedings of
ACM SIGMETRICS Conference, Measurement and Mod-
eling of Computer Systems, June 2003, pp. 172–183.

[24] J. Davidson et al., Voice over IP Fundamentals, second ed.,
Cisco Press, 2006, ISBN 1587052571.

[25] V. Jacobson, Congestion avoidance and control, in: Pro-
ceedings of ACM SIGCOMM, Stanford, CA, August 1988,
pp. 314 – 329.

[26] http://dast.nlanr.net/Projects/Iperf/.
[27] E. Siever et al., Linux in a Nutshell, fifth ed., O’Reilly

Media, Sebastopol, CA, 2005, ISBN 0-596-00930-5.
[28] Y. Etsion et al., Desktop scheduling: how can we know what

the user wants?, in: Proceedings of the 14th international
workshop on Network and Operating systems support for
Digital Audio and Video, Cork, Ireland, 2004. pp. 110–115.

Wenji Wu holds a B.A. degree in Elec-
trical Engineering (1994) from Zhejiang
University (Hangzhou, PRC), and doc-
torate in computer engineering (2003)
from the University of Arizona (Tucson,
USA). He is currently a Network
Researcher in Fermi National Accelera-
tor Laboratory. His research interests
include high performance networking,
optical networking, and network mod-
eling and simulation.
Matt Crawford leads the Wide Area
Systems group in Fermilab’s Computing
Division. He holds a bachelor’s degree in
Applied Mathematics and Physics from
Caltech and a doctorate in Physics from
the University of Chicago. He currently
manages the Lambda Station project,
and his professional interests lie in the
areas of scalable data movement and
access.

http://kerneltrap.org/node/780
http://dast.nlanr.net/Projects/Iperf/

	Interactivity vs. fairness in networked Linux systems
	Introduction
	Related work
	Linux scheduling and interactivity
	Linux scheduler
	Interactive scheduling
	Sleep_avg scoring

	Interactivity vs. fairness in networked Linux system
	Single process receiver
	Receiver plus other CPU load

	Experiments and analysis
	Experiments over local subnets
	Experiments over wide area networks from BNL to FNAL

	A possible solution
	Conclusions
	Acknowledgements
	References


